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A VERSATILE TOOLKIT OF GPCR-SENSORS TO TRACK
NEUROMODULATION
Measuring the real-time dynamics of neuromodulator release in
the brain with subcellular resolution is a long-sought goal in
neuroscience, due to the immense implications for basic science
and medicine. The past 3 years have brought this goal within
reach, with the appearance of a new class of genetically encoded
fluorescent sensors for neuromodulators [1–11] (Fig. 1) con-
structed using G-protein-coupled-receptors (GPCR) [12]. GPCR
sensor design takes advantage of the fact that most neuromodu-
lators harbor GPCRs as their native receptors, and builds on
protein engineering expertise acquired through work on geneti-
cally encoded calcium sensors [13–16]. High-throughput screen-
ing techniques are used to incorporate circularly permuted
fluorescent proteins (cpFP) within GPCRs of interest, enabling
the optical visualization of neuromodulator dynamics [17]. Given
the diversity of naturally existing GPCR scaffolds, there is a large
realm of opportunities to generate new GPCR-sensors with
tailored properties adapted for each neuromodulator. The dLight1
family exemplifies this possibility, providing a panoply of eight
sensors engineered using DRD1, DRD2, and DRD4 receptor
subtypes, each with different properties [18]. The rapid develop-
ments in GPCR sensor engineering are now allowing an ever-
growing ability to tailor sensor use to specific experimental
applications, but may create a dilemma for end-users pondering
which sensor is best suited for their work or how to interpret
results.

TO THE NEUROSCIENTIST END-USER: SENSOR CHOICE RECIPE
IN 6 KEY STEPS
Here we provide a step-by-step recipe for end-users (Fig. 1,
Supplementary Table S1) to guide sensor choice:

Expected effect size of the experimental manipulation
A sensor’s dynamic range (dFFmax) (~50% to ~1000%) provides an
estimate of the range of responses that can be obtained against
varying neuromodulator concentrations. Sensors with good
dFFmax (which we consider >250%) are always preferable, but
particularly when the experiment’s effect size (=magnitude of
changes in neuromodulator levels, normalized to the standard
deviation [19]) is expected to be low (e.g. when measuring
changes in tonic release, release in regions with low

neuromodulator innervation, or to identify small, dose–response
changes in release).

Expected neuromodulator levels in brain region of interest
Existing GPCR-sensors harbor apparent affinities (Kd) ranging from
4 nM up to 7 µM, providing a broad range of detection windows
that should be matched to the expected local neuromodulator
levels. Indeed, the affinity-based model for receptor–ligand (R–L)
interactions [20] posits that, at equilibrium, the fractional occu-
pancy of receptors f depends on the ligand concentration [L] and
the receptor’s apparent affinity Kd: f ¼ ½L�=ðKd þ ½L�Þ. Extending
this model to GPCR-sensors, one can predict that sensors should
work best when half of the sensors are occupied (f = 50%), i.e.
when ligand concentrations [L] are close to the Kd. For example, a
medium affinity sensor for DA (e.g. Kd= 500 nM) is poorly occupied
(f = 4%) at [DA]= 20 nM and thus may not reliably detect tonic DA
changes or phasic DA release in regions poorly innervated by DA
projections, but should work well in the 100–1000 nM window
(~phasic DA in striatum [21, 22]), and only saturate at high
(micromolar) concentrations. High-affinity variants (<200 nM) are
likely well-suited for capturing tonic release or for regions with low
DA innervation (e.g. cortex) but have an elevated risk for ligand
buffering (see below). Medium affinity variants with excellent
dynamic range (dFFmax ≫ 500%) may represent a good alternative
to increase the breadth of the detection range (higher dFF change
for the same change in sensor occupancy). Importantly, in brain
regions where multiple neuromodulators of similar structure are
released, it is essential to favor sensors with high molecular
selectivity, e.g. when tracking DA over NE (Kd-DA ≫ Kd-NE) [11].

Kinetics of the experimental variables
Sensor on/off-kinetics are highly variable (τ-on: 10 ms–2 s; τ-off:
100ms–20 s) and should be interpreted with caution (see below).
Fast kinetics are generally preferred to track endogenous release
dynamics as closely as possible, especially when high temporal
resolution is required, e.g. to track the response to closely related
events (e.g. cues, optogenetic stimulation) or rapid changes in
behavior. In particular, fast on-kinetics will increase sensor
responses to brief release events, boosting sensitivity. Fast off-
kinetics will also reduce the chance of ligand buffering (τ-off
inversely proportional to the dissociation rate constant koff [22]).
Slow off-kinetics on the other hand, will integrate temporally close
release events resulting in a large global response at the cost of
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temporal detection accuracy, akin to GCaMP6s/7 s (“slow”). Fast
kinetics are less critical when tracking average release across
hours/days, or when measuring the release of certain slow-acting
(minutes) neuropeptides, e.g. gastrin-like peptide [11].

Imaging modality
Existing GPCR-sensors are optimized for fiber photometry given
their low basal brightness and relatively high evoked fluorescence.
Future sensor variants with higher basal brightness, improved

Fig. 1 Choosing a neuromodulator GPCR sensor, a balancing act (see main text for details). (1) Kd for 2AG (reported Kd for AEA: 500 nM
[10]). (2) Effect size (d1, d2): magnitude of change in neuromodulator levels between groups, estimated e.g. by calculating Cohen’s d: delta of
the means of the groups, normalized to the pooled standard deviation [19]. (3) ”High” and “low” affinity denominations are relative (here
chosen based on DA/NE systems) and may be shifted for other neuromodulators. (4) Expected future developments. 5HT serotonin, Ach
acetylcholine, Ado adenosine, CNO clozapine-N-oxide, C-term C-terminal, DA dopamine, DRD1/DRD2 DA receptor 1 and 2, dFFmax dynamic
range (maximal dFF), eCB endocannabinoid, FP fluorescent protein, FSCV fast-scan cyclic voltammetry, GRP gastrin-like peptide, Kd apparent
affinity, ND not determined, NE noradrenaline, τ-on/τ-off on- and off-sensor kinetics (half-rise, decay times).
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evoked fluorescence and/or subcellular targeting to individual
compartments (e.g. soma vs. dendrites) will be necessary to allow
identification and tracking cellular or subcellular release events
under miniscope or 2-photon modalities.

Multicolor experiments
GPCR-sensors are compatible with 2-color imaging (e.g. with
calcium indicators [1, 2, 4, 10]). If available, red neuromodulator
sensors [2, 4] are advantageous in combination with green axon
terminal calcium imaging (red terminal imaging is very sensitive to
bleaching). Red sensors also offer higher tissue penetrance; which
should produce higher SNR in photometry or increase 2-photon
maximal imaging depth. GPCR-sensors can also be implemented
in all-optical experiments using optogenetic manipulations
[1, 2, 4, 7, 10] at orthogonal wavelengths (see refs. [1, 23]). There
is a distinct risk for spectral crosstalk between opsin and sensor
which should always be tested for by using appropriate controls
(see ref. [24]).

Pharmacological considerations
GPCR-sensors are engineered using human neuromodulator
receptors and thus can respond to pharmacological ligands. This
provides a useful tool to validate neuromodulator sensors using
antagonists (see refs. [1, 23]), but also means GPCR-sensors are
incompatible with certain pharmacological manipulations. In such
cases, sensors responsive to the drug of interest should be
avoided in favor of sensors built on a different receptor subtype,
or alternatively one can use periplasmic-binding-protein (PBP)
sensors [25] or fast-scan cyclic voltammetry (FSCV).

TO THE DRUG HUNTER: A FUTURE WITH RECEPTOR-SUBTYPE
SENSOR FAMILIES FOR DRUG SCREENING?
The pharmacological characteristics of GPCR-sensors also repre-
sent a unique opportunity for novel drug discovery assays using
multicolor fluorescent technology. We provided proof of concept
for this possibility by screening DRD1 and DRD2 ligands against
red DRD1 and green DRD2 sensors in vitro [2]. Such assays could
presumably be deployed in vivo [1–5, 7] to probe pharmacody-
namic target engagement of specific receptor subtypes during
behavior following drug administration, with high spatiotemporal
resolution and cell specificity.

A CAUTIONARY TALE: POTENTIAL PROBLEMS WITH GPCR-
SENSORS
GPCR-sensors have several limitations that end-users should be
aware of.

Ligand buffering?
There is a risk for sensors to buffer endogenous ligands, i.e.
reducing neuromodulator availability at native receptors and in
turn affecting endogenous downstream signaling. We verified
in vitro [1] that sensor expression does not affect neuromodulator-
induced cAMP signaling. However, whether long-term expression
of sensors in the intact brain induces ligand buffering is unknown.
To address this, one could measure the impact of sensor
expression (at increasing concentrations, i.e. increasing AAV titers)
on native neuromodulator dynamics obtained with FSCV or other
functional (e.g. PKA or cAMP [26, 27]), physiological (e.g. cell firing
properties), neuroanatomical (e.g. inflammatory markers) or
behavioral readouts. Mathematical modeling could help estimat-
ing the risk of ligand buffering, for example by calculating the
quantity [LS] of ligand molecules bound to a sensor (sensor affinity
KdS) and comparing it to the quantity [LR] of ligand molecules
bound to a native receptor (receptor affinity KdR). We could then
use affinity-based models for receptor–ligand interactions [20, 22]
which posit that, for two independent receptor populations S and

R of concentrations BmaxS and BmaxR, specific binding= [LS]+
[LR] at equilibrium. Ligand buffering at sensors would equate:
[LS]= BmaxS × [L]/(KdS+ [L]) and ligand binding at native recep-
tors: [LR]= BmaxR × [L]/KdR+ [L]). Although this model has its
limitations [22], it can make several predictions: (i) The risk of
ligand buffering [LS] increases with sensor concentration BmaxS.
At present, the concentration of sensors has not been determined
(see next paragraph), and it is therefore not possible to determine
whether ligand buffering is a significant phenomenon or not. (ii)
The risk of ligand buffering increases inversely with the sensor’s
KdS. Thus, high-affinity sensors (low KdS values) should be
expressed at concentrations (BmaxS) as low as possible to ensure
low risk of buffering: [LS]≪ [LR]. Sensors with slow off-kinetics
(high τ-off) also increase the risk of buffering since KdS is inversely
proportional to τ-off [20]. (iii) The impact of ligand buffering on
native receptor function will depend on their affinities KdR. For
example, the reported affinity of DA receptors DRD1 and DRD2
are KdDRD1= 1600 nM and KdDRD2= 25 nM, respectively [28]. In
the condition when concentrations of sensors BmaxS and
receptors BmaxR are equal (=Bmax), at low DA concentrations
([DA]= 20 nM), a high affinity sensor (KdS= 50 nM) has a high
chance of affecting DA binding at DRD2 since binding would
be of similar magnitude at the sensor and at the DRD2 receptor:
DA � S½ � ¼ 29% ´ Bmax � DA � DRD2½ � ¼ 45% ´ Bmax. Since
DRD1 is less sensitive to low basal DA (low binding at DRD1:
DA� DRD1½ � ¼ 1:2% ´ Bmax), such high-affinity sensors are
less likely to have a buffering effect on this receptor subtype at
low [DA]. Upon phasic DA release ([DA]= 200 nM), the same
high-affinity sensor (KdS= 50 nM) will have a lesser effect on
DRD2 (DRD2 close to saturation: DA� DRD2½ � ¼ 89% ´ Bmax)
but could strongly impact binding at DRD1 ( DA� S½ � ¼ 80% ´
Bmax vs: DA� DRD1½ � � 11% ´ Bmax). This illustrates how sen-
sors also need to be carefully chosen based on whether changes
in tonic DA release (e.g. DA dips at DRD2 [26]) or phasic release are
under study. Of course, it must be noted that (i) the spatiotem-
poral dynamics of release and reuptake [21, 29] and (ii) the
number of sensors expressed near the sites of release and
exposed to the neuromodulator will further dictate the kinetics
and significance of ligand buffering and would need to be
incorporated into mathematical models.

Membrane overcrowding?
GPCR-sensors are expressed at the membrane but lack ligand-
induced internalization. Although their turnover is not fully
understood, it is possible that their surface levels increase over
time, which could lead to membrane overcrowding, and in turn
affect membrane properties. Acute in vitro dLight1 expression was
estimated ~10-fold higher relative to endogenous GPCRs [30] and
this expression level did not affect endogenous GPCR signaling
pathways [1]. However, neither the level of sensors expressed
in vivo, nor the impact on in vivo membrane physiology (e.g.
excitability, oligomerization) or toxicity (e.g. cell death) are known
and should be addressed in future work. Sensor concentrations in
tissue obtained using increasing AAV titers could be quantified
using classical radioligand-binding assays; one could expect values
around ~1 pmol/mg protein as shown for striatal transgenic DRD2
[31]. High-resolution estimates of sensor expression in functional
compartments (e.g. dendrites) obtained using fluorescent tags
[32] could also be useful. This would allow to estimate the quantity
of sensors actually trafficked near sites of release and thus
susceptible to contribute to (1) the fluorescent signal, (2)
membrane overcrowding, and (3) ligand buffering.

Impact on downstream signaling?
Since GPCR are membrane receptors, they interact with cellular
proteins to induce downstream signaling. It was verified that
GPCR-sensors do not couple with G-protein or beta-arrestin
pathways [1, 3]. However, GPCRs, in particular their C-terminus,
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are involved in a multitude of other protein–protein interactions,
including kinases (e.g. PKA/PKC, GRK) and other scaffold proteins
(e.g. PDZ-domain-containing proteins) [33] which should be
investigated in future work.

Interpretation of transient kinetics?
Kinetics of obtained data should be interpreted with caution [25].
Ideally, sensor on/off-kinetics primarily reflect the kinetics of
exposure (release/clearance) to the neuromodulator. However,
they are likely also influenced by the sensor’s structure, which
impacts kinetics of ligand binding/unbinding and conformational
dynamics. For example, since GPCR-sensors do not couple with G-
proteins, they likely cannot adopt the “high-affinity” orthosteric
state induced by G-protein binding [34]. This may affect ligand
binding/unbinding dynamics observed at GPCR-sensors and in
turn impact (1) the kinetics of the sensor and therefore also (2) the
kinetics of measured transients.
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